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Abstract
This contribution provides a brief introduction to AC/RF superconductivity,
with an emphasis on application to accelerators. The topics covered include
the surface impedance of normal conductors and superconductors, the residual
resistance, the field dependence of the surface resistance, and the superheating
field.
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1 Introduction
This chapter provides an introductory-level tutorial to AC/RF superconductivity. The emphasis is on
the application to resonant cavities for particle accelerators. In this respect, we will present the basic
theoretical concepts and experimental results related to the low-field surface impedance, the superheating
field, and the field dependence of the surface resistance. All these topics are presented to a greater depth
in the bibliography and some of the references listed at the end of this tutorial.

Approximately 20 years after the discovery of superconductivity in 1911, experimental evidence of
a large change in conductivity at the transition temperature was demonstrated by using Radio-Frequency
(RF) currents [1,2]. Shortly thereafter, a theory of the electrodynamics of superconductors, based on the
phenomenological two-fluid model, was proposed by Fritz and Heinz London [3, 4]. A new theory of
the electrodynamics of superconductors by Mattis and Berdeen was published in 1958 [5], based on the
Bardeen–Cooper–Schrieffer (BCS) theory, which had been published one year earlier [6]. Experimental
results based on far-infrared transmission through superconducting thin films and supporting the theory
were published by Tinkham et al. in the same period [7, 8].

Regarding the highest AC/RF magnetic field that can be applied to a superconductor, the so-
called superheating field, the earliest theoretical work, based on the Ginzburg–Landau (GL) theory,
dates back to the 1960s [10–12]. Experimental results in the range 90–300 MHz for both type I and type
II superconductors in the vicinity of the critical temperature, Tc, and consistent with the theory, were
published in 1977 [13].

Whereas niobium is the superconductor almost exclusively used to produce resonant cavities for
particle accelerators, superconducting materials with higher critical temperatures are also being used for
RF applications in passive microwave devices, such as filters, resonators, and antennas for mobile com-
munications [14], and to produce microresonators for a variety of applications, such as photon detectors
and quantum circuits [15].

2 Basics of RF cavities
Generally speaking, a resonant cavity is any volume enclosed by metallic walls that contains oscillating
electromagnetic fields. For application to particle accelerators, the electromagnetic energy stored within
the cavity is used to accelerate a charged particle beam. The frequency range relevant for accelerator
applications is RF (3 kHz – 300 GHz).
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The electromagnetic field inside an RF cavity is the solution to the wave equation:(
∇2 − 1

c2

∂2

∂t2

){
E
H

}
= 0, (1)

with the boundary conditions n̂×E = 0 and n̂ ·H = 0, where n̂ is the unit vector normal to the surface.
Solutions to Eq. (1) with the specified boundary conditions can be separated into two families of resonant
modes with different eigenfrequencies, based on the direction of the electric and magnetic field:

– TEmnp modes having only transverse electric fields, and
– TMmnp modes having only transverse magnetic fields (but a longitudinal component of the electric

field),

where m, n, and p are indices denoting the number of zeros in the φ, ρ, and z directions, respectively,
in cylindrical coordinates. A useful example of a resonant cavity is a metallic cylindrical waveguide of
length L, shorted by metallic plates at both ends. This geometry is commonly referred to as ‘pill-box’.
The mode used to accelerate charged particles in RF cavities having a geometry resembling that of a
pill-box is the TM010. The electric and magnetic fields, as well as the resonant frequency of this mode,
can be calculated analytically for the pill-box geometry:

Ez = E0J0

(
2.405ρ

R

)
eiωt,

Hφ = −iE0

η
J1

(
2.405ρ

R

)
eiωt,

ω0 =
2.405c

R
,

(2)

where J0 and J1 are Bessel functions of zeroth and first order, respectively, R is the pill-box radius, c is
the speed of light, ω is the angular frequency, and η =

√
µ0/ε0 ' 377 Ω is the impedance of a vacuum.

Equation (2) shows that the electric field, being at a maximum on-axis, can be used to accelerate charged
particles travelling along the axis of the cavity. A schematic representation of the electric and magnetic
fields inside a pill-box type cavity is shown in Fig. 1.

Fig. 1: Electric and magnetic fields for the TM010 mode inside a pill-box cavity.

Other resonant modes that are sometimes used are the TE011 mode and the TM110 mode. The
first of these has a zero electric field on the cavity surface and is used to study the surface resistance of
superconductors in RF magnetic fields. The second has a transverse component of the electric field on
axis, tilting the beam, which is sometimes necessary in collider accelerators in order to provide a head-on
collision between two beams and thereby increase the luminosity. The deflecting TM110 mode has also
been used in an SRF separator cavity to separate beams of different particles [9].
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Although the resonant frequency of the TM010 mode does not depend on the pill-box length, L,
the following condition for synchronism between the beam and the electric field in the cavity sets the
cavity length:

L = βc
TRF

2
, (3)

where β is the speed of the particle relative to the speed of light and TRF = 2π/ω0 is the period of
oscillation of the RF field. The condition imposed by Eq. (3) assures that, as an example, a bunch of
relativistic electrons entering the cavity at time t = 0, when Ez = 0, will experience the maximum
acceleration as they travel along the cavity axis.

2.1 Figures of merit
The accelerating field of the cavity, Eacc, is defined as the ratio of the accelerating voltage, Vc, divided
by the cavity length. Vc is obtained by integrating the electric field at the particle’s position as it traverses
the cavity:

Eacc =
Vc

L
=

1

L

∣∣∣∣∫ L

0
Ez(ρ = 0, z)eiω0z/c dz

∣∣∣∣ . (4)

Other important parameters are the ratios of the peak electric and magnetic fields on the cavity surface
divided by the accelerating field, Ep/Eacc and Bp/Eacc, respectively, as they are related to practical
limitations of a cavity’s performance, such as field emission and quench.

The power dissipated as heat in the cavity wall, Pc, and the energy stored within its volume, U,
are given by

Pc =
1

2
<
{∫

V
J ·E dv

}
=

1

2

∫
S
Rs|H|2 da, (5)

U =
1

2
µ0

∫
V
|H|2 dv. (6)

The quality factor of the cavity, Q0, is defined, in the same way as for any resonator, as the ratio of the
energy stored divided by the energy dissipated in in one RF period:

Q0 =
ω0U

Pc
=
ω0µ0

∫
V |H|

2 dv∫
S Rs|H|2 da

. (7)

Q0 can be calculated from the Breit–Wigner resonance curve as the ratio of the resonant frequency,
divided by the full width at half maximum, as shown in Fig. 2.

Assuming that the surface resistance is uniform over the cavity surface and does not depend on
the amplitude of the applied field, it is possible to define from Eq. (7) a geometry factor, G, that depends
only on the cavity shape (but not its size) and that provides a direct relation between Q0 and Rs:

G =
ω0µ0

∫
V |H|

2 dv∫
S |H|2 da

= Q0Rs. (8)

The assumptions on the definition of G are usually valid at low field amplitudes.

The figures of merit for the TM010 mode in a pill-box cavity, calculated from the analytical fields
of Eq. (2), are as follows:

Eacc =
2

π
E0,

Ep/Eacc =
π

2
= 1.57,

Hp/Eacc =
π

2

J1(1.84)

η
= 2430

A ·m−1

MV ·m−1
= 30.5

Oe
MV ·m−1

,

G = η
2.405L

2(R+ L)
=

453L/R

1 + L/R
Ω.

(9)
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Practical RF cavities have more complex shapes than a simple pill-box, and require numerical solvers to
calculate the electric and magnetic fields inside the cavity.

Fig. 2: The normalized stored energy as a function of frequency for a resonator with resonant frequency ω0 and
Q0 = 104.

2.2 SRF cavity performance
The performance of a superconducting RF cavity is described by a plot of the quality factor as a function
of the accelerating gradient. The state-of-the-art performance of a 1.3 GHz bulk Nb cavity tested multiple
times at 2.0 K is shown in Fig. 3 [16]. The Q0 value at low field corresponds to a surface resistance of
' 8 nΩ, and the maximum Eacc value corresponds to a peak surface magnetic field Bp = µ0Hp '
185 mT. In the following sections, we will provide a basic description of what determines the Rs at low
field as well as the maximum obtainable Bp value.

Fig. 3: The state-of-the-art performance of a bulk Nb cavity at 1.3 GHz and 2.0 K [16].
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3 Surface impedance
The electromagnetic response of a metal, whether normal or superconducting, is described by a complex
surface impedance defined as follows:

Zs =
|E‖|∫∞

0 J(x) dx
=
|E‖|
|H‖|

= Rs + iXs, (10)

where Rs is the surface resistance and Xs is the surface reactance. In Eq. (10), we have neglected the
displacement current, which is reasonable for good conductors at frequencies less than ∼ 1016 Hz.

3.1 The electrodynamics of normal conductors
The electrodynamics of normal conductors is based on Maxwell’s equations and on material equations
that specify the relations: between the electric displacement, D, and the electric field; between the in-
duction field, B, and the magnetic field; and between the current density and the electric field. Since the
inside volume of a cavity is typically under vacuum, we have D = ε0E, B = µ0H . A relation between
J and E can be obtained from Drude’s model of ‘nearly free electrons’ in a solid and resulting in Ohm’s
law:

J =
ne2

mτ

1

1 + iωτ
E = σE, (11)

where σ = ne2/mτ is the conductivity and τ ' 10−14 s is the scattering time of the electrons, given
by the ratio of the mean free path, `, divided by the Fermi velocity, vF. In Eq. (11), we have used the
approximation ωτ � 1, which is valid at RF frequencies. Using Maxwell’s equations with the material
equations, the following equation for the magnetic field inside a metal is obtained:

∇2H = iσµ0ωH. (12)

The solution of Eq. (12) for a semi-infinite slab occupying the positive-x region of space with a magnetic
field of amplitude H0 applied in the y-direction is given by

Hy(x, t) = H0e−x/δe−i(x/δ−ωt), (13)

which describes a wave propagating in the positive-x direction with an exponentially decreasing ampli-
tude. δ is the characteristic decay length, called the ‘skin depth’, and given by

δ =

√
2

µ0σω
. (14)

The electric field, obtained from Ampere’s law, has a behaviour similar to that of the magnetic field:

Ez(x, t) = −1 + i

σδ
Hy(x, t). (15)

The surface impedance is then given by

Zs =
|Ez(x = 0)|
Hy(x = 0)

=
1 + i

σδ
. (16)

Therefore, Rs = Xs = 1/σδ. If we consider, for example, copper (σ ' 5.8 × 107 S ·m−1) at 1.5 GHz
and 300 K, we obtain δ = 1.7 µm and Rs = 10 mΩ.

At lower temperatures, the conductivity increases and therefore δ decreases and may become
shorter than the electrons’ mean free path. This implies that the local relation between field and current
given by Ohm’s law is no longer valid at low temperatures, since the distance over which the field varies
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becomes less than the mean free path. A new relationship was introduced by Reuter and Sondheimer in
1948 [17], in which J is related to E over a volume of the size of the mean free path:

J(r, t) =
3σ

4π`

∫
V

R[R ·E(r′, t−R/vF )]

R4
e−R/` dr′, (17)

with R = r′ − r. An effective conductivity, σeff ≈ (δ/`)σ, results from Eq. (17), showing that, unlike
the DC case, increasing the purity of the metal does not improve its conductivity. This phenomenon is
commonly referred to as the ‘anomalous skin effect’. The surface resistance in the extreme anomalous
limit (`→∞), valid for very good conductors such as copper at low temperatures, is given by

Rn(`→∞) =

[√
3
(µ0

4π

)2
]1/3

ω2/3(ρ`)1/3. (18)

The product ρ` is a material constant and it is 6.8 × 10−16 Ω · m−2 for copper. If one were to operate
a 1.5 GHz copper cavity at cryogenic temperatures such as, for example, 4.2 K, rather than 300 K, the
surface resistance would decrease by a factor of ≈ 0.14, which is not sufficient to justify the cost of a
refrigerator.

3.2 The electrodynamics of superconductors
3.2.1 Theory
Unlike the DC case, superconductors in RF fields do not have zero resistance at finite temperatures.
This is because a time-dependent magnetic field within the penetration depth generates an electric field
(Faraday’s law) that acts on normal electrons, as they are not shielded from it by the superconducting
electrons (which form ‘Cooper pairs’ of mass twice that of a single electron) due to their inertia.

A simple way to describe the electrodynamics of superconductors was given by the London broth-
ers in 1934, based on the phenomenological ‘two-fluid’ model of Gorter and Casimir [18]. According to
the model, the charge carriers are divided into two subsystems: superconducting carriers of density ns

and normal electrons of density nn. The superconducting carriers were associated later on with Cooper
pairs of charge −2e and mass 2me [19]. The normal current Jn and the supercurrent Js are assumed to
flow in parallel, and the total current is the sum of Js and Jn. Js flows with no resistance and follows the
London equations:

∂

∂t
Js =

1

µ0λ2
L

E, (19)

∇× Js = − 1

λ2
L

H, (20)

where λL =
√
m/µ0nse2 is the so-called London penetration depth. Equation (19) (the first London

equation) implies perfect conductivity, since a current would flow indefinitely in a superconductor even
for zero electric field, and that an electric field is required to maintain an RF current. Equation (20) (the
second London equation) implies the spontaneous flux exclusion from the bulk of a superconductor and
that an induction field is the source of the supercurrent. Note that Eq. (20) can be written as follows:

Js = − 1

λ2
L

A, (21)

where A is the magnetic vector potential. Equation (21) represents a local condition between current and
field that is valid if ξ0 � λL or ` � λL. ξ0 is the coherence length, representing the distance between
electrons forming a Cooper pair.

In the presence of an RF current, J = J0eiωt, the relation between J and E in a superconductor, is
given by

J = Jn + Js = (σ1 − iσ2)E, (22)
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where σ1 = nne
2/mτ is the conductivity of the normal component (the same as the normal-state con-

ductivity) and σ2 = nse
2/mω is the conductivity of the superconducting component, obtained using

Eq. (20). The electrodynamics of the superconductor become analogous to those of a normal conductor
if one replaces σ with σ1 − iσ2 in the expressions for the skin depth, Eq. (14), and the magnetic field,
Eq. (13). The skin depth becomes

δ =

√
2

µ0ω(σ1 − iσ2)
' (1 + i)λL

(
1 + i

σ1

2σ2

)
, (23)

where we have made use of the approximation σ1 � σ2, which is valid for superconductors at tempera-
ture T � Tc. The magnetic field inside the superconductor becomes

Hy(x, t) = H0e−x/λLe
−i

(
x
λL

σ1
2σ2
−ωt

)
, (24)

and the amplitude of the magnetic field decreases exponentially with a characteristic length λL. For
niobium, λL ' 36 nm, much shorter than the skin depth for copper at 1.5 GHz. The surface impedance
of a superconductor can be obtained by substituting Eq. (23) into Eq. (16). After some calculus involving
complex numbers and with the approximation σ1 � σ2, we obtain the following:

Zs =
1

2
µ2

0ω
2σ1λ

3
L + iωµ0λL. (25)

The equivalent circuit for a superconductor is a resistor of resistance Rs in parallel with an inductor of
inductance Ls = µ0λL, the so-called ‘kinetic inductance’, due to the superconducting charge carriers.
The dependence of Rs on ω and ` in Eq. (25) indicates the following.

– The surface resistance increases quadratically with frequency, and therefore low-frequency cavities
should be considered to reduce the dissipated power.

– The surface resistance increases with increasing purity of the material. An intuitive way to think
about this is that normal-conducting electrons of higher conductivity draw a relatively higher frac-
tion of the total current.

To understand the temperature dependence of the surface resistance, we consider the temperature depen-
dence of ns and nn:

λL(T )2 ∝ 1/ns(T ) ∝ 1/[1− (T/Tc)
4], (26)

σ1(T ) ∝ nn(T ) ∝ e−∆/kBT . (27)

Equation (27), which is valid for T � Tc, reflects the creation of normal electrons due to the thermal
break-up of Cooper pairs. From Eqs. (27) and (25), we obtain the following dependence of Rs on
frequency, material purity, and temperature:

Rs ∝ ω2λ3
L`e
−∆/kBT , for T < Tc/2. (28)

The exponential decrease ofRs with temperature indicates that low-temperature operation, such as 2.0 K
for Nb cavities, is preferable to reduce RF losses.

Similarly to the anomalous skin effect in normal conductors, if ξ0 � λL and ` � λL, the local
relation between current and field is no longer valid. In 1953, Pippard [20] proposed replacing Eq. (21)
with Eq. (29) below, ξ0 playing a role analogous to that of ` in the non-local electrodynamics of normal
conductors:

J(r) =
3

4πξ0λ2
L

∫
V

R[R ·A(r′)]

R4
e−R/ξ dr′, (29)

7

Anon Anon
Highlight



with R = r′ − r and 1/ξ ' 1/ξ0 + 1/`. The dependence of the penetration depth on the mean free path
can be approximated as λ ≈ λL

√
1 + ξ0/` and the dependence of Rs on material purity becomes

Rs ∝
(

1 +
ξ0

`

)3/2

`. (30)

Equation (30) shows that Rs ∝ ` increases with increasing mean free path if `� ξ0 (the so-called ‘clean
limit’) as discussed above, and that Rs ∝ `−1/2 increases with decreasing mean free path if `� ξ0 (the
so-called ‘dirty limit’). Therefore Rs(`) has a minimum at ` = ξ0/2. In 1958, Mattis and Bardeen [5]
obtained from the BCS theory a non-local equation between the total current density (including the
supercurrent and the normal current) and the vector potential:

J(r) =
3

4π2vF~λ2
L

∫
V

R[R ·A(r′)I(ω,R, T )e−R/`]

R4
dr′, (31)

where I(ω,R, T ) is a function that decays over a characteristic length R ∼ ξ0. Equation (31) becomes a
product of a kernel function K(q) times the vector potential in the Fourier domain: J(q) = −K(q)A(q)
in one dimension. The surface impedance can be obtained as a function of the kernel K(q), as follows:

Zs =
iµ0ωπ∫∞

0 ln(1 + K(q)
q2

) dq
, (32)

for diffuse scattering of electrons at the metal surface, such as for the case of a ‘rough’ surface on a scale
of the mean free path, or

Zs =
iµ0ω

π

∫ ∞
−∞

1

q2 +K(q)
dq, (33)

for specular reflection of electrons at the metal surface. The calculation of the real and imaginary parts
of K(q) involves the solution of complex integrals, which can only be done numerically. A computer
code that allows the BCS surface impedance to be calculated using Eqs. (32) and (33) was written by
Halbritter in 1970 [21] and a copy is available from the author. An online calculator is also available [22].
An analytical approximation of the BCS surface resistance valid in the local limit, for T < Tc/2 and
ω < ∆/~, is given by [23]

Rs '
µ2

0ω
2λ3σ1∆

kBT
ln

(
2.246kBT

~ω

)
exp

(
− ∆

kBT

)
. (34)

Considering the case of niobium (λ = 40 nm, σ1 = 3.3 × 108 S ·m−1, ∆/kBTc = 1.85, Tc = 9.25 K)
at 2.0 K and 1.5 GHz, we obtain RBCS ' 20 nΩ and Xs ' 0.47 mΩ. The ratio of RBCS for Nb at 2.0 K
divided by Rs for Cu at 300 K is ' 2 × 10−6. Even when the Carnot efficiency ηC = 0.67%, due
2.0 K operation and the technical efficiency of a cryoplant, ηT ' 20%, are included, the reduction in
power consumption by using superconducting cavities instead of normal-conducting ones is still quite
significant (' 103 reduction factor).

3.2.2 Experimental results
Figure 4 shows the surface resistance measured in bulk Nb at 4.2 K over a broad range of frequencies [24].
Small deviations from the BCS theory can be explained by strong coupling effects or an anisotropic
energy gap, in the presence of scattering by impurities or inhomogeneities.

3.2.3 Residual resistance
Improvements in the surface preparation of bulk Nb cavities over the past 40 years have reduced the
typical residual resistance value from ∼ 100 nΩ to ∼ 1 − 10 nΩ. Rres becomes the dominant term
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in the surface resistance at low frequency (<∼ 750 MHz) and low temperatures (<∼ 2.1 K), where
RBCS becomes exponentially small. There are several possibilities contributing to the residual resistance.
Among those there are:

– losses due to trapped magnetic field,
– losses due to normal-conducting precipitates near the surface,
– grain boundary losses,
– metal/oxide interface losses, and
– losses due to normal-conducting electrons in subgap states.

Fig. 4: The surface resistance measured in bulk Nb at 4.2 K as a function of frequency. The solid line is a fit to the
experimental data, while the dashed line results from a calculation based on the BCS theory. Reprinted from [24]
with permission from IEEE.

Figure 5 shows the surface resistance of a Nb thin film deposited on Cu, measured at 4.2 K and 1.5 GHz,
as a function of a parameter related to the purity of the film [25]. The data are consistent with the
existence of a broad minimum of RBCS(`), as predicted by calculations based on the BCS theory. A
measurement of the temperature dependence of the low-field surface resistance of bulk Nb at 1.3 GHz is
shown in Fig. 6 [26]. The data show a clear deviation from the exponential dependence as the temperature
decreases towards 0 K. This additive, T -independent contribution to the surface resistance is the so-
called residual resistance, Rres (not to be confused with the DC residual resistivity ρn = 1/σ1). A
well-known contribution to Rres is due to trapped DC magnetic field, due to the incomplete Meissner
effect in technical materials. Figure 7 shows, for example, the low-field Rs(T ) measured for different
DC magnetic field amplitudes applied while cooling the cavity down from 300 K to 4.2 K [28]. Any
DC magnetic field at the cavity location can be trapped in the form of fluxoids pinned by defects in
the material, as the cavity is cooled below Tc. A simple estimate of this contribution can be made by
assuming that all of the DC field, Hext, is trapped in the form of N fluxoids, each carrying one flux
quantum φ0, and that their normal-conducting cores, each of radius ∼ ξ0, dissipate according to the
normal state surface resistance. An improved description was given by Gurevich, in which both the
pinning strength and the dissipation due to the motion of the fluxoid’s core under the RF field are taken
into account [27]. Figure 8 shows a schematic representation of a pinned fluxoid with a segment of length
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Fig. 5: The surface resistance measured in Nb thin films at 4.2 K and 1.5 GHz as a function of a parameter related
to the mean free path. The solid line is a result from a calculation based on the BCS theory. Reprinted from [25]
with permission from Elsevier.

Fig. 6: The temperature dependence of the low-field surface resistance of bulk Nb at 1.3 GHz, showing a saturation
to a T -independent value at low temperatures [26].

`s almost normal to the surface of the superconductor. At low RF frequency, the surface RF Meissner
current causes rocking of the whole fluxoid segment. As the RF frequency increases, the RF oscillations
of the segment are mostly localized closer and closer towards the surface, until only a tip of length ∼ λ
vibrates in the high-frequency limit. The RF penetration depth and the pinned fluxoid segment set the
frequency scales. The RF power dissipation due to the fluxoid’s motion is given by

PRF =

〈∫ `s

0
u̇(z, t)F (z, t) dz

〉
ω

= −ωF
2

Im
∫ `s

0
u(z, ω)e−z/λ dz, (35)
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Fig. 7: The low-field surface resistance as a function of temperature for bulk Nb at 1.5 GHz for different amplitudes
of a DC magnetic field applied during the cavity cool-down. The solid lines are fitted with Rs(T ) = RBCS(T ) +

Rres [28].

where u(z, t) is the fluxoid displacement, obtained by solving the equation of motion, and F = φ0H0/λ
is the amplitude of the driving force from the RF field. The result from a calculation of PRF(ω) with
Eq. (35) is shown in Fig. 8, indicating a change from ∼ ω2 dependence at low frequency to ∼

√
ω at

intermediate frequency and frequency independent at high frequency. Experimental data on bulk Nb in
the GHz range show that Rres,mag ∝

√
ωHext. Rres,mag calculated from Eq. (35) in the intermediate

frequency range is given by

Rres,mag =
Hext

Hc

√
µ0ρnω

2g
, (36)

where Hc is the thermodynamic critical field and g is a parameter related to the anisotropy of the super-
conductor. In the case of a 1.5 GHz Nb cavity (ρn ∼ 5 × 1010 Ω · m−1, Hc = 2000 Oe, 2g = 1), the
residual resistance due to the Earth’s magnetic field (∼ 0.5 Oe) could be as high as ∼ 600 nΩ, about 30
times higher than RBCS at 2.0 K. By applying magnetic shields around superconducting cavities, it is
possible to shield external fields down to ∼ 1− 10 mOe.

Another well-known contribution to the residual resistance in Nb cavities is due to the precipitation
of normal-conducting niobium hydride islands near the surface, if the bulk H concentration is greater than
∼ 5×10−4 wt.% and if the cool-down rate is< 1 K ·min−1 in the temperature range 75–150 K. Figure 9
shows an example of Q0(Eacc) measured in a 1.5 GHz bulk Nb cavity at 2.0 K after it was held in the
region 100–150 K for various lengths of time [29]. This problem can be mitigated by degassing the
cavity in a ultra-high-vacuum furnace at 600–800◦C for 2–6 h. Tunnelling measurements of bulk Nb
samples show the presence of electronic states within the energy gap. The density of states as a function
of energy N(ε) obtained from the measurements can be described by the phenomenological model of
Dynes [35, 36], resulting in a finite density of states at the Fermi level, N(0) ' γNn/∆, where γ is a
damping parameter and Nn is the density of states in the normal state. The contribution to Rres from
normal electrons occupying subgap states can be estimated from the two-fluid model surface resistance
with γσn/∆ replacing σ1 [23]:

Rres,subgap ∼ µ2
0ω

2λ3σnγ/∆, (37)

Residual resistance values of ∼ 10 nΩ, similar to those obtained in bulk Nb cavities, could result from
Eq. (37) for γ/∆ ∼ 10−3. The origin of these subgap states is not well understood. They could be due
to intrinsic effects, such as strong impurity scattering or strong electron–phonon coupling, or extrinsic
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Fig. 8: (a) A schematic representation of a pinned fluxoid near the surface of a superconductor in the presence of an
RF field. (b) The normalized power dissipation due to the oscillatory motion of a fluxoid, as a function of frequency
normalized to ω0 = ε0/2ηλ

2, where ε0 is the fluxoid line energy and η is the viscous drag coefficient [27].

effects, such as normal-conducting precipitates, defective oxides, or pinned fluxoids.

Fig. 9: The degradation of the quality factor in a 1.5 GHz bulk Nb cavity at 2.0 K after it was held in the region
100–150 K for various lengths of time [29].

3.3 High-temperature superconductors
Superconductors with relatively low Tc, such as Nb, have a ‘s-wave’ character, meaning that the energy
gap is uniform in the momentum space. On the other hand, high-temperature cuprates (Tc ∼ 90 K) have
a ‘d-wave’ character, indicating that the energy gap has four nodes along symmetric directions in mo-
mentum space. This leads to unfavorable consequences for RF application: the temperature dependence
of the surface resistance follows a power law, instead of being exponential, and residual losses are higher.
The Rs(Hp) dependence also exhibits strong non-linearity. The coherence length is much shorter than
that of Nb (1–2 nm, instead of ∼ 40 nm); therefore the pairing of electrons can easily be disrupted by
defects. Cuprates are also ‘granular’ superconductors, with high grain boundary resistance contributing
to high Rres. All these effects hinder their use for SRF cavity application where low Rs at high RF fields
is required. Figure 10 shows an example of Rs(T ) measured in YBCO samples at 1.7 and 2 GHz [30].
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Superconductors with higher Tc than Nb but still s-wave, such as Nb3Sn (Tc ' 18 K), NbN, and NbTiN
(Tc ' 17 K), are more promising alternative materials for RF application. Their higher Tc value could
allow operating cavities at 4.2 K instead of 2.0 K, therefore reducing the cost of refrigeration.

Fig. 10: Rs(T ) measured on YBCO samples. Reprinted from [30] with permission from Nova Science Publishers,
Inc.

4 The superheating field
In the previous section, we discussed the physics determining the quality factor of SRF cavities at low RF
fields. However, the feasibility of SRF cavities for particle accelerator applications, particularly those for
high-energy physics, relies on the ability to reach high accelerating gradients, corresponding to high RF
magnetic fields on the cavity surface. In this respect, it is important to understand what is the maximum
RF magnetic field that can be applied to the surface of a superconductor (assumed to be ‘defect-free’),
before a transition to the normal state occurs.

Theoretically, the critical RF magnetic field is considered to be the so-called superheating field,
Hsh, which is the highest field up to which the superconductor remains in the Meissner state, and is
unaltered by the dissipative motion of fluxoids. At H0 = Hsh, the screening surface current reaches the
depairing value, Jd = nse∆/pF, meaning that the kinetic energy of the superconducting carriers exceeds
the binding energy of the Cooper pairs. The magnetic field at which the Gibbs free energy has the same
value whether the first fluxoid is inside or outside a type II superconductor is the so-called lower critical
field, Hc1. However, a fluxoid entering the surface of a superconductor has to overcome the so-called
Bean–Livingston surface barrier [31], which arises because of the attractive force between the fluxoid
near the surface and its anti-fluxoid image, at the same distance from the surface but on the opposite
side, required to ensure that the normal component of the current density at the boundary is zero. This
is shown schematically in Fig. 11. The Gibbs free energy of a superconductor with a single fluxoid, as a
function of the fluxoid position, is given by

G(x) = φ0

[
H0e−x/λ − φ0

4πλ2
K0

(
2x

λ

)
+Hc1 −H0

]
, (38)
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where the first term is the energy due to the Meissner current, the second term is half of the interaction
energy between the fluxoid and its image, the third term is the fluxoid self-energy, and the last term is
the work done by the source of the applied field. K0 is the zeroth-order Hankel function. The behaviour
of G(x) is shown schematically in Fig. 11: the surface barrier disappears only at H0 = Hsh > Hc1.

Fig. 11: (a) A schematic representation of a fluxoid near the surface of a superconductor. (b) The Gibbs free energy
as a function of the fluxoid position for different applied fields.

Theoretical calculations of the superheating field as a function of the Ginzburg–Landau (GL) pa-
rameter, κGL, close to Tc have been done since the 1960s using the GL theory [10–12]. The metastability
of the Meissner state leading to the existence of a superheating field represents a local minimum of the
free energy, meaning that its second derivative is positive. The field up to which this metastability condi-
tion is satisfied has been evaluated considering fluctuations of the order parameter and the supercurrent
along the boundary of the superconductor in one or two dimensions [32, 33]. Hsh resulting from the GL
theory (T ≈ Tc) is given by

Hsh ' 1.2Hc, κGL ≈ 1,

Hsh = 0.745Hc, κGL � 1.
(39)

The calculation of Hsh has recently been extended over the whole temperature range, 0 < T < Tc, by
the numerical solution of Eilenberger equations [34, 38]. These equations were obtained from Gorkov’s
formulation of the BCS theory. The calculations were done in the high-κGL limit and as a function of
the mean free path. In the clean limit, Hsh at 0 K is given by

Hsh = 0.845Hc, κGL � 1. (40)

A weak dependence of Hsh on ` was found, if scattering was due to non-magnetic impurities, and an
enhancement of Hsh (0 K) up to ' 4.2% at T = 0 was found for πξ0/` ' 0.6 [38].

Niobium, being a marginal type II superconductor (κGL ≈ 1), is a difficult material to study
theoretically. Assuming the result in Eq. (39) to be valid at low T/Tc, one can estimate the Hsh of Nb to
be ∼ 240 mT at 0 K. On the other hand, the Hsh of Nb3Sn (κGL ≈ 30) obtained from Eq. (40) is of the
order of 420 mT at 0 K. Results from experiments aimed at measuring the Hsh of bulk Nb and of a thin
Nb3Sn layer grown on a Nb cavity at 1.3 GHz as a function of temperature are shown in Fig. 12 [39].
The data show that RF magnetic fields above Hc1 have been achieved in both materials, but the highest
field for Nb3Sn is much lower than the value of Hsh predicted by the theory.

Unfortunately, the surface barrier can easily be suppressed by defects, such as nano-precipitates or
even roughness, making it quite difficult in practice to extend the Meissner state up to Hsh in high-κGL

materials (usually deposited as thin films on a substrate). In 2006, Gurevich proposed the use of multi-
layered films of alternating superconductor–insulator–superconductor deposited on a bulk Nb cavity to
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Fig. 12: Measurements of the maximum RF field achievable in bulk Nb and Nb3Sn 1.3 GHz cavities as a
function of temperature [39]. The solid, dashed, and dashed–dotted lines show the theoretical expectations for
Hc(T ), Hsh(T ), and Hc1(T ), respectively. The solid black square shows the highest RF magnetic field ever mea-
sured on Nb cavities at 2.0 K.

achieve the superheating field on the cavity surface [40]. By making the thickness of the superconduc-
tor layer, d, smaller than the penetration depth, the Hc1 of the layer should increase significantly, as
calculated by Abrikosov in 1964 [37]:

Hc1 =
2φ0

πd2

(
ln
d

ξ
− 0.07

)
. (41)

5 Rs(H0) dependence due to thermal feedback
As we discussed in Sections 3 and 4, there are well-established theories to calculate the surface resistance
and the RF critical field of superconductors. Unfortunately, there is no well-established theory describing
the dependence of the surface resistance on the amplitude of the RF magnetic field, from low field up
to Hsh. In general terms, the surface resistance is expected to increase with increasing RF field because
the density of thermally activated normal electrons increases. This occurs because the energy gap is
reduced by the kinetic energy of the Cooper pairs to an effective gap ∆eff(vs) = ∆− pFvs, where pF is
the Fermi momentum and vs = H0/λens is the superfluid velocity. A decrease of Q0 with increasing
Eacc is typically observed in SRF cavities, as shown, for example, in Fig. 3. The measured slope of
the Q0(Eacc) dependence changes significantly for different cavity treatments and for different cavity
material (e.g. Nb bulk vs. thin film). In this section, we will discuss a thermal feedback model proposed
by Gurevich [41] as a simple mechanism causing an increase of Rs with increasing amplitude of the RF
field.

Let us consider the one-dimensional case of a superconductor of thickness d with a vacuum on
one side (the inner surface of an SRF cavity) and liquid He on the other side (the outer surface of an SRF
cavity). An RF field of amplitudeH0 is applied on the vacuum side, parallel to the surface. The RF power
dissipated on the inner surface at temperature Tm is transferred as heat to the He bath of temperature T0.
The temperature of the outer surface is Ts. The temperature profile is shown schematically in Fig. 13.
The heat balance equations for the inner and outer surfaces can be written as follows:

1

2
Rs(Tm)H2

0 =

∫ Ts

Tm

κ(T ) dT = hK(Ts, T0)(Ts − T0), (42)

where κ(T ) is the thermal conductivity and hK(Ts, T0) is the Kapitza conductance, which is the heat
transfer coefficient between the outer surface and the superfluid He bath (T0 < 2.17 K).
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Fig. 13: (a) A schematic of heat transfer from the inner to the outer cavity surface. (b) The H0(Tm) dependence
calculated from Eqs. (43) and (44) for Nb at 1.5 GHz and T0 = 2.0 K. The maximum in the H0(Tm) defines the
point of thermal breakdown.

As will be shown below, the overheating of the inner surface is small relative to the He bath
temperature (Tm−T0 � T0); therefore we can neglect the temperature dependence of κ and hK and use
their values at T0. This simplifies Eq. (42) to the following:

1

2
Rs(Tm)H2

0 =
hKκ

κ+ dhK
(Tm − T0). (43)

By substituting the following approximate dependence of RBCS(Tm),

RBCS(Tm) ' Aω2

Tm
e−∆/kBTm , (44)

in Rs(Tm) = RBCS(Tm) + Rres, Eq. (43) gives a relation between H0 and Tm. This dependence is
plotted, as an example, in Fig. 13 for 3 mm thick Nb at 1.5 GHz, with RBCS(2 K) = 20 nΩ, ∆/kB =
17.1 K, hK = 5 kW · m−2 · K−1, κ = 10 kW · m−1 · K−1, and T0 = 2.0 K. The maximum of the
H0(Tm) curve corresponds to a thermal quench of the cavity. This point defines the temperature of the
inner surface, Tb, and the magnetic field, Hb, at which thermal breakdown occurs. Tb is the value of Tm

that satisfies dH0/dTm = 0, where H0(Tm) is given by Eq. (43), with Eq. (44) for RBCS. Neglecting
the residual resistance, one obtains

Tb − T0 ≈
T 2

0

∆
. (45)

where Tb − T0 ≈ 0.23 K for Nb at 2.0 K. Substituting Eq (45) into Eq. (43), one obtains

H2
b ≈

2kBT
2
0 hKκ

(κ+ dhK)∆eRBCS
, (46)

where e = 2.718. The breakdown field estimated from Eq. (46) is that which occurs in the case of
uniform heating of the inner surface, without any localized defect. Because both H0 and Rs depend on
the inner surface temperature, Eqs. (43) and (44) provide a dependence of Rs on H0, and it is therefore
possible to calculate a Q0(H0) curve (Q0 = G/Rs). This is shown, as an example, in Fig. 14 for a
1.5 GHz bulk Nb cavity with G = 280 nΩ at 2.0 K and the thermal parameters mentioned earlier.

For a thin film of thickness dtf and thermal conductivity κtf deposited on a substrate, the total
thermal conductance becomes hK/[1 + hK(d/κ + dtf/κtf)]. In the case of a 1.5 µm thick Nb3Sn film
[κtf ' 10−2 W ·m−1 · K−1] on top of a 3 mm thick Nb cavity, the heat transfer coefficient of the thin
film, dtf/κtf ' 670 W ·m−2 ·K−1, is comparable to that of the Nb substrate, d/κ ' 330 W ·m−2 ·K−1,
at 2.0 K.

16



Fig. 14: Q0(B0) calculated up to the thermal breakdown field for a 1.5 GHz Nb cavity at 2.0 K with the parameters
mentioned in the text and Rres = 10 nΩ.

6 Summary
Unlike the DC case, superconductors in an RF field have a non-zero surface resistance. The surface
resistance can be easily understood in terms of a two-fluid model and is due to the interaction of the
electric field (exponentially decaying from the surface) with normal-conducting electrons.

At low RF fields, the surface resistance can be expressed as the sum of the BCS surface resistance
and a residual resistance. The low-temperature BCS surface resistance:

– increases quadratically with frequency,
– decreases exponentially with temperature, and
– has a minimum as a function of the material purity.

There are many possible contributions to the residual resistance, and trapped fluxoids and niobium hy-
dride precipitates have been proven to be among them.

The maximum theoretical RF field that can be applied to the surface of a superconductor is the
superheating field, which is of the order of the thermodynamic critical field. Superconductor–insulator–
superconductor multilayer thin films might be a possible way to reach the superheating field for super-
conducting materials other than Nb.

There exists no well-accepted theory of the surface resistance at high RF fields that could be used
to describe the Q0(Eacc) curves of SRF cavities. Thermal feedback between RF power dissipation and
surface temperature is a simple extrinsic mechanism causing an increase of the surface resistance with
increasing RF field.
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